Self-aggregation of convection in long channel geometry
نویسندگان
چکیده
Cloud cover and relative humidity in the tropics are strongly influenced by organized atmospheric convection, which occurs across a range of spatial and temporal scales. One mode of organization that is found in idealized numerical modeling simulations is self-aggregation, a spontaneous transition from randomly distributed convection to organized convection despite homogeneous boundary conditions. We explore the influence of domain geometry on the mechanisms, growth rates, and length scales of self-aggregation of tropical convection. We simulate radiative-convective equilibrium with the System for Atmospheric Modeling (SAM), in a non-rotating, highly-elongated 3D channel domain of length > 104 km, with interactive radiation and surface fluxes and fixed sea-surface temperature varying from 280 K to 310 K. Convection selfaggregates into multiple moist and dry bands across this full range of temperatures. As convection aggregates, we find a decrease in upper-tropospheric cloud fraction, but an increase in lower-tropospheric cloud fraction; this sensitivity of clouds to aggregation agrees with observations in the upper troposphere, but not in the lower troposphere. An advantage of the channel geometry is that a separation distance between convectively active regions can be defined; we present a theory for this distance based on boundary layer remoistening. We find that surface fluxes and radiative heating act as positive feedbacks, favoring self-aggregation, but advection of moist static energy acts as a negative feedback, opposing self-aggregation, for nearly all temperatures and times. Early in the process of self-aggregation, surface fluxes are a positive feedback at all temperatures, shortwave radiation is a strong positive feedback at low surface temperatures but weakens at higher temperatures, and longwave radiation is a negative feedback at low temperatures but becomes a positive feedback for temperatures greater than 295-300 K. Clouds contribute strongly to the radiative feedbacks, especially at low temperatures.
منابع مشابه
تحلیل نحوه پخش نانوذرات در جریان جابهجایی مختلط آشفته نانوسیال آب و اکسید مس
In the present paper, turbulent convection of CuO-Water Nanofluid in a vertical channel is investigated numerically. In order to simulate the flow, the fluid is considered as a continuous phase while the discrete nanoparticles are dispersed through it. The dispersion of CuO nanoparticles in different flow conditions are studied in order to find the effective mechanisms of particles dispersion i...
متن کاملMarangoni self-propelled capsules in a maze: pollutants 'sense and act' in complex channel environments.
Environmental remediation is a highly pressing issue in society. Here we demonstrate that autonomous self-propelled millimeter sized capsules can sense the presence of pollutants, mark sites for visible identification and remove the contamination, while navigating in a complex environment of interconnected channels, the maze. Such long-range self-powered capsules propelled by the Marangoni effe...
متن کاملDetailed Investigation of the Self-Aggregation of Convection in Cloud-Resolving Simulations
In models of radiative–convective equilibrium it is known that convection can spontaneously aggregate into one single localized moist region if the domain is large enough. The large changes in the mean climate state and radiative fluxes accompanying this self-aggregation raise questions as to what simulations at lower resolutions with parameterized convection, in similar homogeneous geometries,...
متن کاملUnsteady free convection flow between two vertical plates with variable temperature and mass diffusion
The unsteady free convection flow between two long vertical parallel plates withvariable temperature and mass diffusion in the presence of the thermal radiation hasbeen presented. The governing dimensionless coupled linear partial differentialequations on the flow are solved by using the Laplace transform technique. TheExact solutions have been obtained for the fluid velocity, temperature and t...
متن کاملMagnetohydrodynamic mixed convection effects on the removal process of fluid particles from an open cavity in a horizontal channel
This paper presents the results of a numerical study on the heat transfer performance and the removal process of fluid particles under the influence of magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. The bottom wall of the cavity is heated at a constant temperature (Th) while the top wall of the channel is maintained at a relatively low temperature (Tc). Air wi...
متن کامل